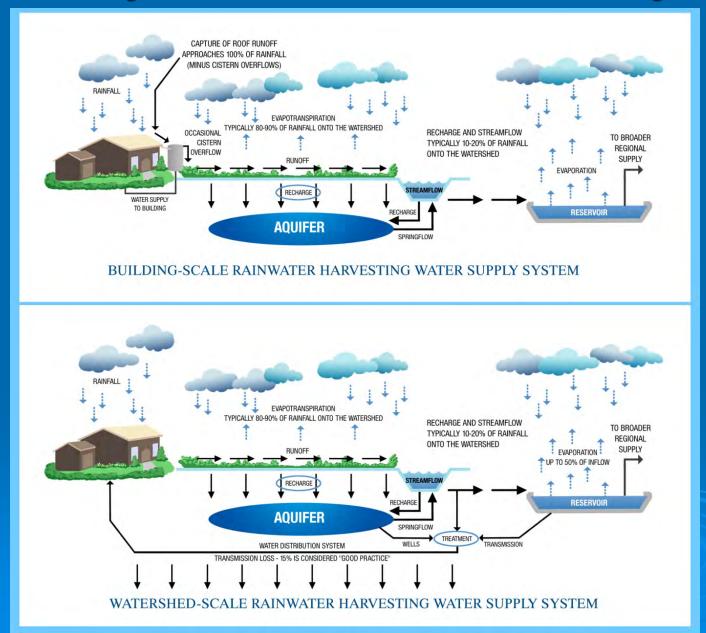
Zero Net Water A sustainable water development concept for the Texas Hill Country – and beyond ARCSA 2014

Imagine a water management strategy that would accommodate growth and development without unsustainably pumping down aquifers or incurring the huge expense and societal disruption to build reservoirs or transport water from remote supplies to developing areas.

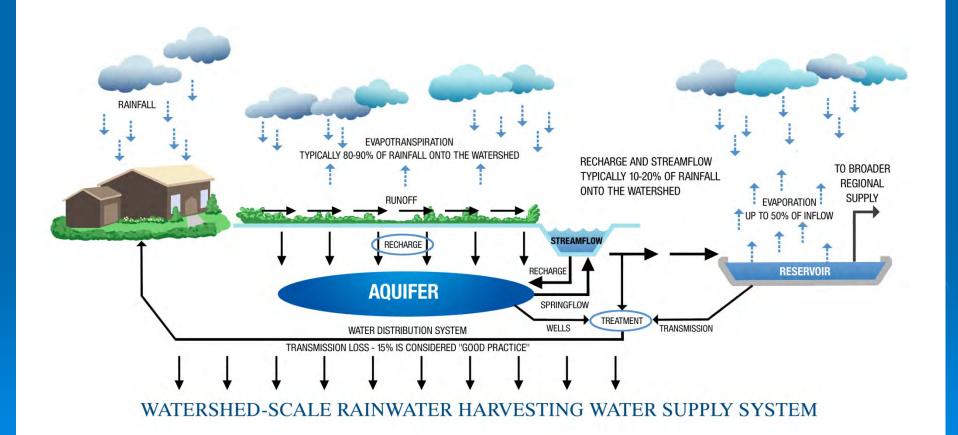
Welcome to the concept of **Zero Net Water**.

The Zero Net Water Concept:

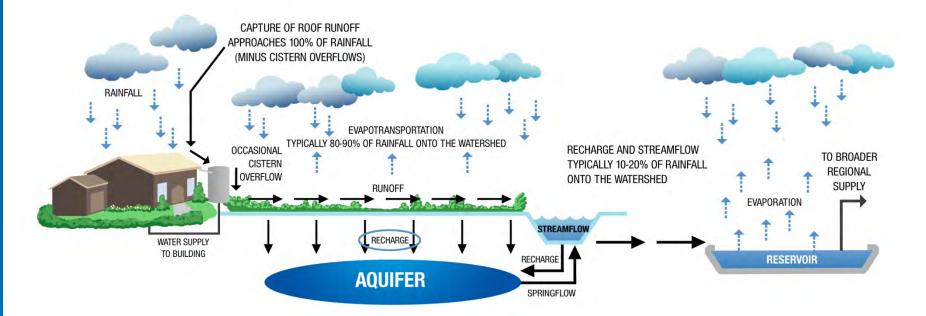
Water supply is centered on building-scale rainwater harvesting.


"Waste" water management is centered on decentralized reclamation and reuse to supply irrigation demands.

Stormwater management is centered on LID/green infrastructure/volume-based hydrology to hold water on the site, maintaining hydrologic integrity of the watershed.


The Result:

Minimal disruption of flows through the watershed, even as water is harvested at the site scale to be used – and reused there – to support development, creating a sustainable water development model

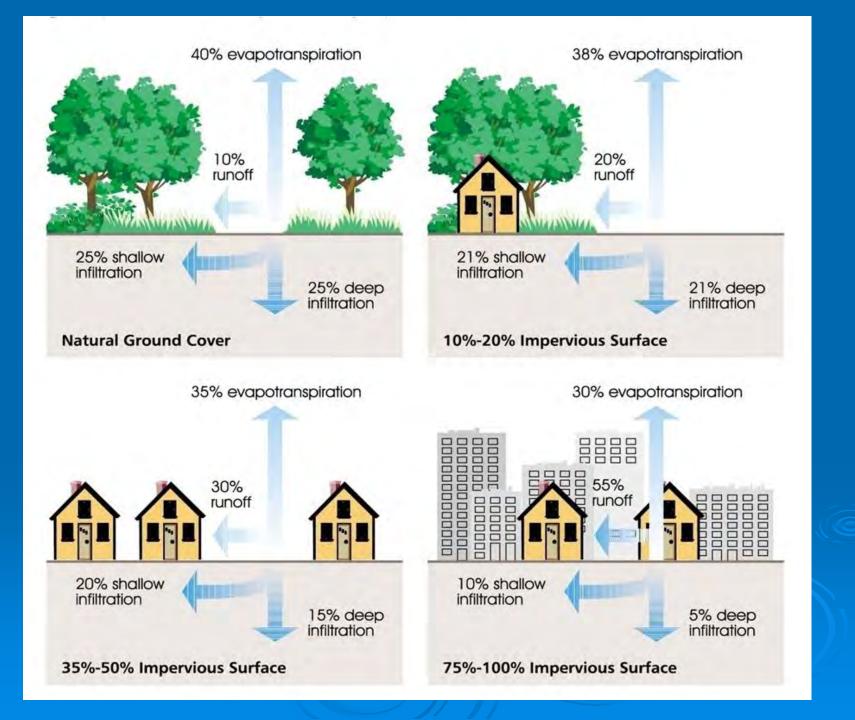

Take advantage of difference in the inherent water capture efficiency of building-scale vs. watershed-scale rainwater harvesting

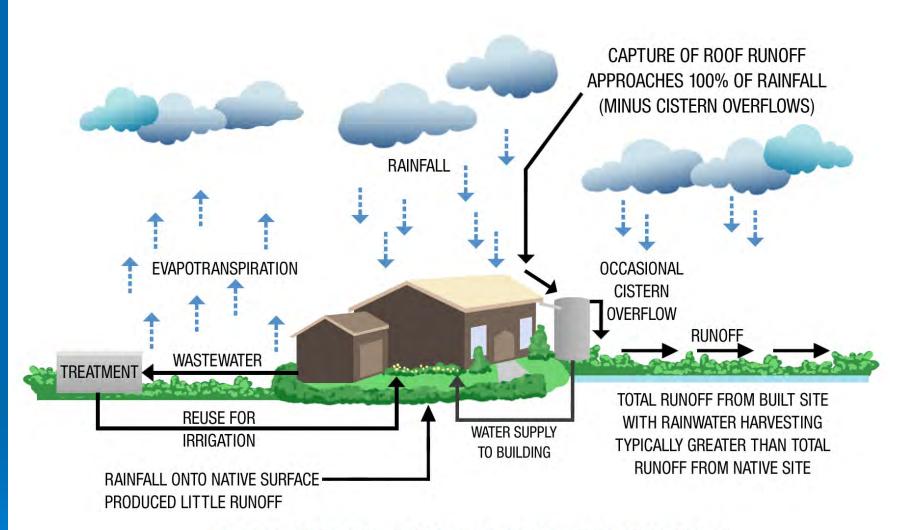
Inefficiencies are inherent in the Watershed-Scale Rainwater Harvesting water supply model

Building-Scale Rainwater Harvesting significantly blunts those inefficiencies

BUILDING-SCALE RAINWATER HARVESTING WATER SUPPLY SYSTEM

Which model is more sane?


Capture rainfall at extremely high efficiency, very lightly impaired, over the little parts of the watershed right where the water is needed – the buildings – and use it there?


or

Capture rainfall at very low efficiency, with degraded quality, over the whole watershed, then lose a great deal of it in storage and in moving the same amount of water that fell on a building back to that building? And use a lot of energy doing that?

Building-scale RWH "grows" water supply in direct proportion to increasing demand Besides more efficiently transforming water falling on the watershed into a water supply usable by humans, creating a sustainable water supply system, ALSO creates a more *economically efficient* water supply system – supply is built, and paid for, only in response to imminent demand, one building at a time.

Building-scale rainwater harvesting does NOT rob streamflow

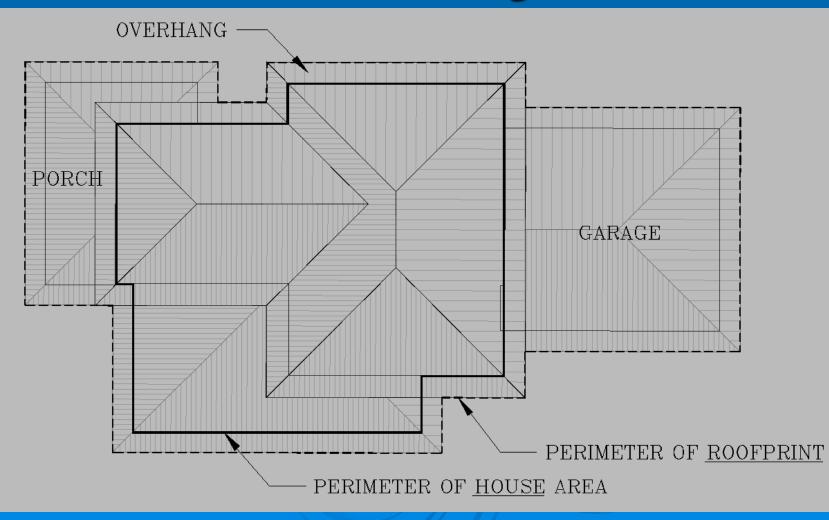
BUILDING-SCALE WATER CYCLE

Bottom line ...

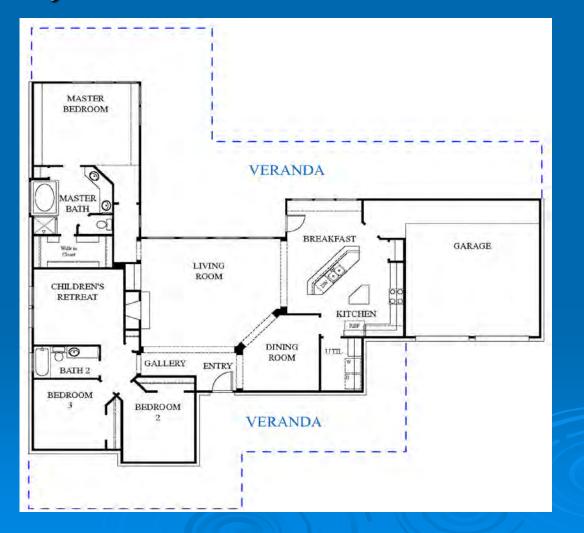
- We capture and utilize on site some of the additional runoff created by development.
- Do this instead of allowing that additional runoff to become quickflow.
- If not mitigated in some other way, that quickflow creates water quality, channel erosion and downstream flooding problems.
- We can capture a water supply directly usable by humans off new impervious surfaces without any significant impact on streamflow out of the watershed.

The caveat to "Zero" ...

The building-scale cistern is a "distributed reservoir"

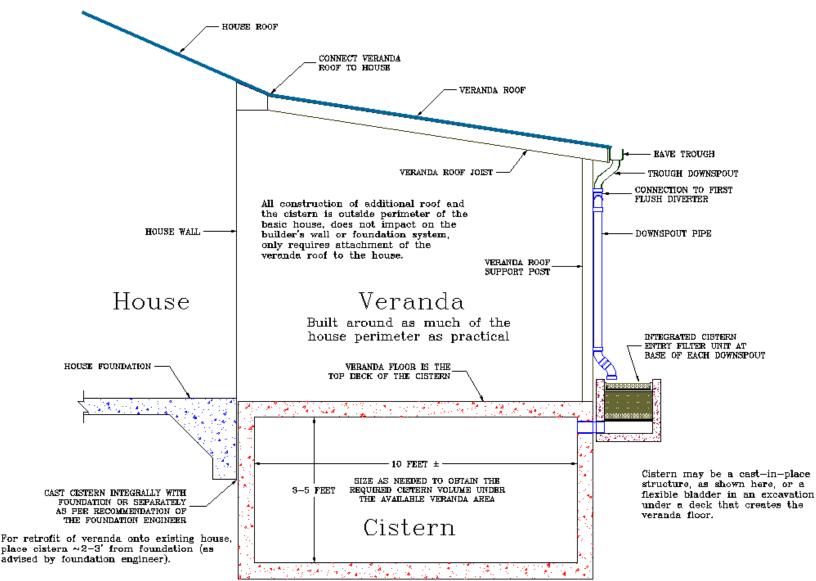

- Stores water for future use
- Has a "firm yield" that will cover a given water demand profile
- Considerations of cost efficiency lead to concept of "right-sizing" the RWH system – roofprint and cistern capacity – so that "firm yield" would cover demands in all but most severe drought periods
 Forego spending a lot to cover the last little bit of
- Forego spending a lot to cover the last little bit of demand, instead bringing in a backup supply to cover it

Backup supply would be drawn from the watershed-scale RWH system "Right-sizing" would minimize this draw Need for backup supply from watershedscale system occurs just when that system is also most stressed by drought > "Off-loading" demands on the watershedscale system most of the time allows it to retain more supply to buffer drought stress > Watershed-scale system recovers more quickly when rains do come


Roofprint	4,500 sq. ft.
Cistern capacity	35,000 gallons
Occupancy	4 persons
Water usage rate	45 gpcd

Backup supply requirements20094,000 gallons201110,000 gallonsTotal =14,000 gallonsPortion of demand supplied by rainwater indrought period 2008-2014 = 97.0%

Roofprint is the plan area of the ROOF, all the roof, NOT the house living area



The "Veranda Strategy" Relatively cost-efficient additional roofprint

The "Veranda Strategy"

to create the Hill Country Rainwater Harvesting Vernacular House Design

Roofprint4,500 sq. ft.Cistern capacity35,000 gallonsOccupancy4 personsWater usage rate40 gpcd

Backup supply requirements

2011 2,000 gallons

Total = 2,000 gallons Portion of demand supplied by rainwater in drought period 2008-2014 = 99.5%

Roofprint	4,000 sq. ft.
Cistern capacity	30,000 gallons
Occupancy	4 persons
Water usage rate	40 gpcd

Backup supply requirements

2009	6,000 gallons
2011	10,000 gallons

Total = 16,000 gallons Portion of demand supplied by rainwater in drought period 2008-2014 = 96.1%

Roofprint4,000 sq. ft.Cistern capacity30,000 gallonsOccupancy4 personsWater usage rate35 gpcd

Backup supply requirements

2011 2,000 gallons

Total = 2,000 gallons Portion of demand supplied by rainwater in drought period 2008-2014 = 99.4%

Roofprint	3,500 sq. ft.
Cistern capacity	25,000 gallons
Occupancy	4 persons
Water usage rate	35 gpcd

Backup supply requirements

2009	6,000 gallons
2011	10,000 gallons

Total = 16,000 gallons Portion of demand supplied by rainwater in drought period 2008-2014 = 95.5%

Dripping Springs, 1987-2014 Seniors Oriented Development

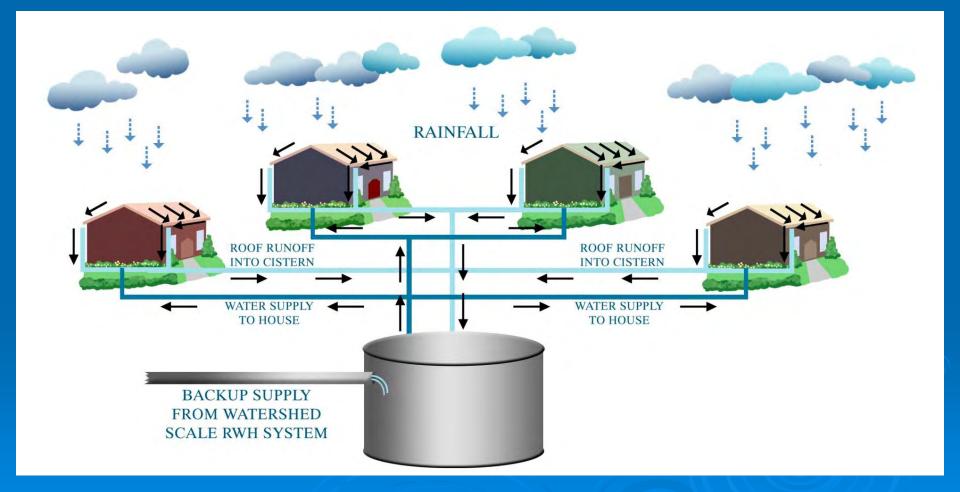
Roofprint	<mark>2,500</mark> sq. ft.
Cistern capacity	15,000 gallons
Occupancy	2 persons
Water usage rate	45 gpcd

Backup supply requirements

2009	2,000 gallons
2011	8,000 gallons

Total = 10,000 gallons Portion of demand supplied by rainwater in drought period 2008-2014 = 95.7%

San Antonio


Standard subdivision - 4 person occupancy

Water Usage	Roofprint	Cistern	2	- Backup Supply Required (gal)						Portion of Demand	
Rate (gpcd)	(sq. ft.)	Capacity (gal)	2008	2009	2010	2011	2012	2013	2014*	from Rainwater	
45	4,500	35,000	8,000	18,000	0	8,000	0	0	0	92.6%	
40	4,250	32,500	4,000	14,000	0	4,000	0	0	0	94.6%	
35	4,000	30,000	0	10,000	0	2,000	0	0	0	96.6%	
								2	Mail (3	(a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	

*thru September

Water Usage	Roofprint	Cistern	6	Portion of Demand						
Rate (gpcd)	(sq. ft.)	Capacity (gal)	2008	2009	2010	2011	2012	2013	<u>2014*</u>	from Rainwater
45	2,500	20,000	2,000	6,000	0	2,000	0	0	0	95.7%
40	2,250	17,500	2,000	6,000	0	2,000	0	0	0	95.1%
35	2,000	15,000	2,000	6,000	0	2,000	0	0	0	94.4%
								¥	thru Septem	ıber

Collective Conjunctive-Use System

Brownwood

Standard subdivision - 4 person occupancy

Water Usage	Roofprint	Cistern	- Backup Supply Required (gal) -							Portion of Demand
Rate (gpcd)	<u>(sq. ft.)</u>	Capacity (gal)	2008	2009	2010	2011	2012	2013	<u>2014*</u>	from Rainwater
45	4,250	27,500	0	2,000	0	4,000	0	0	2,000	98.2%
40	3,750	25,000	0	2,000	0	4,000	0	0	2,000	97.9%
35	3,250	22,500	0	2,000	0	4,000	0	0	2,000	97.7%
								2	*thru Septen	nber

Water Usage	Roofprint	rint Cistern	- Backup Supply Required (gal) -							Portion of Demand
Rate (gpcd)	<u>(sq. ft.)</u>	Capacity (gal)	2008	2009	2010	2011	2012	2013	2014*	from Rainwater
45	2,250	15,000	0	0	0	2,000	0	0	0	99.1%
40	2,000	12,500	0	0	0	2,000	0	0	0	99.0%
35	1,750	10,000	0	2,000	0	4,000	0	0	0	96.5%
								¥	thru Septem	iber

DFW Metroplex Area

Ferris

Standard subdivision - 4 person occupancy

Water Usage	Roofprint	Cistern	- Backup Supply Required (gal) -							Portion of Demand
Rate (gpcd)	(sq. ft.)	Capacity (gal)	2008	2009	2010	2011	2012	<u>2013</u>	2014*	from Rainwater
45	3,250	25,000	0	0	0	2,000	0	0	2,000	99.1%
40	3,000	20,000	0	0	0	4,000	0	0	0	98.9%
35	2,750	17,500	0	0	0	2,000	0	0	0	99.3%
									*thru Septer	nber

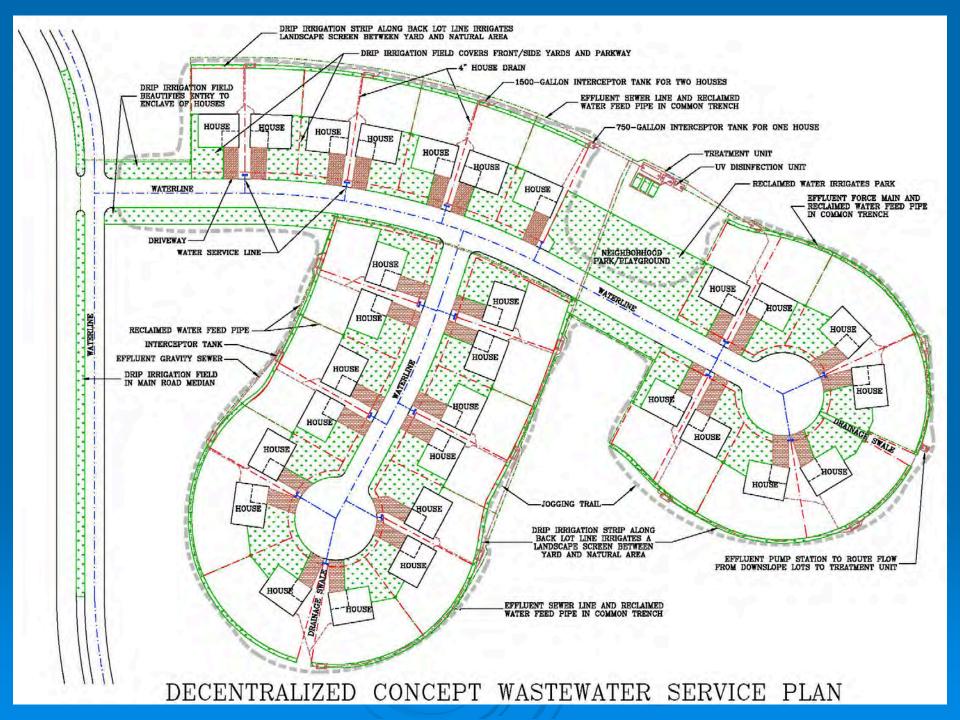
Water Usage	Roofprint	Cistern	- Backup Supply Required (gal) -							Portion of Demand
Rate (gpcd)	(sq. ft.)	Capacity (gal)	2008	2009	2010	2011	2012	2013	2014*	from Rainwater
45	2,000	12,500	0	0	0	0	0	0	0	100%
40	1,750	10,000	0	0	0	0	0	0	0	100%
35	1,500	10,000	0	0	0	0	0	0	0	100%
								*thru September		

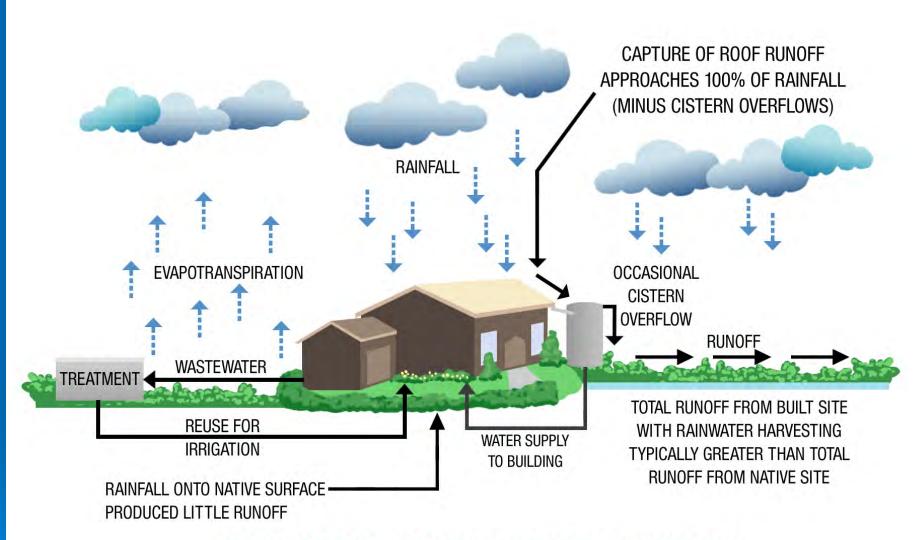
DFW Metroplex Area

Denton

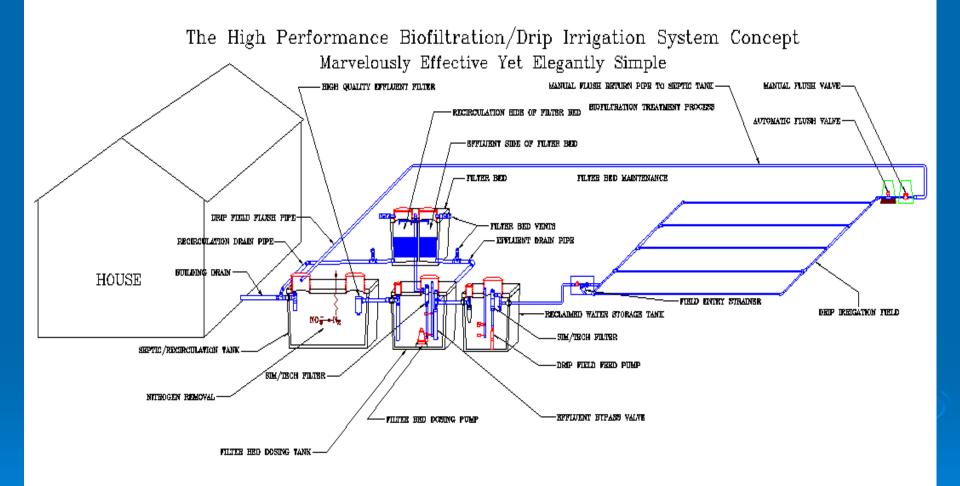
Standard subdivision - 4 person occupancy

Water Usage	Roofprint	Cistern	- Backup Supply Required (gal) -							Portion of Demand
Rate (gpcd)	(sq. ft.)	Capacity (gal)	2008	2009	2010	2011	2012	2013	2014*	from Rainwater
45	3,750	27,500	0	0	0	0	0	0	2,000	99.5%
40	3,250	22,500	0	0	0	0	0	0	6,000	98.5%
35	3,000	17,500	0	0	0	0	0	0	4,000	98.8%
									*thru Septen	nber


Water Usage	Roofprint	Cistern	- Backup Supply Required (gal) -							Portion of Demand
Rate (gpcd)	(sq. ft.)	Capacity (gal)	2008	2009	2010	2011	2012	2013	2014*	from Rainwater
45	2,000	12,500	0	0	0	0	0	0	0	100%
40	1,750	10,000	0	0	0	0	0	0	2,000	99.0%
35	1,500	10,000	0	0	0	0	0	0	2,000	98.8%
								3	*thru Septen	iber


Under **Zero Net Water** Irrigation needs would be met mainly by "waste" water reuse

"Waste" water reuse has high value for rainwater harvesters


- A "right-sized" RWH system for interior use only is already "large"
- To provide irrigation supply directly out of the cistern would require a larger system or *much* more backup
- A flow of water is sitting *right there* we can use for irrigation, that we've *already paid* a hefty price to gather – the "waste" water flowing from water used in the house

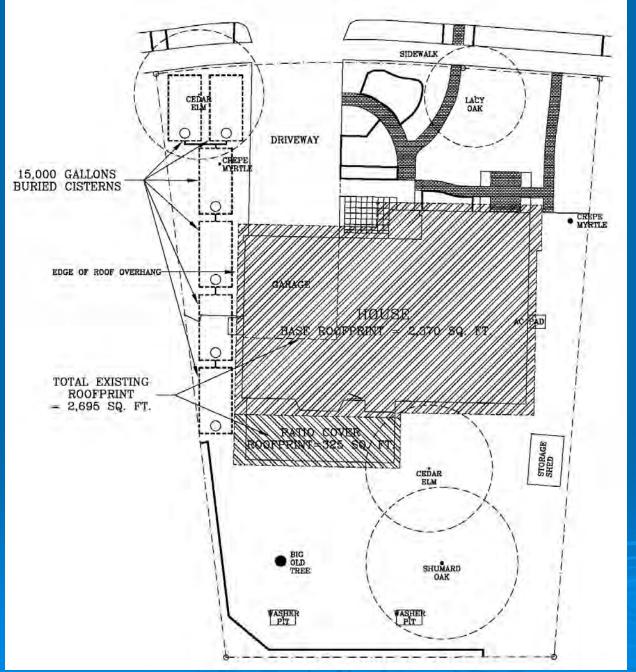
Don't lose it – reuse it!

BUILDING-SCALE WATER CYCLE

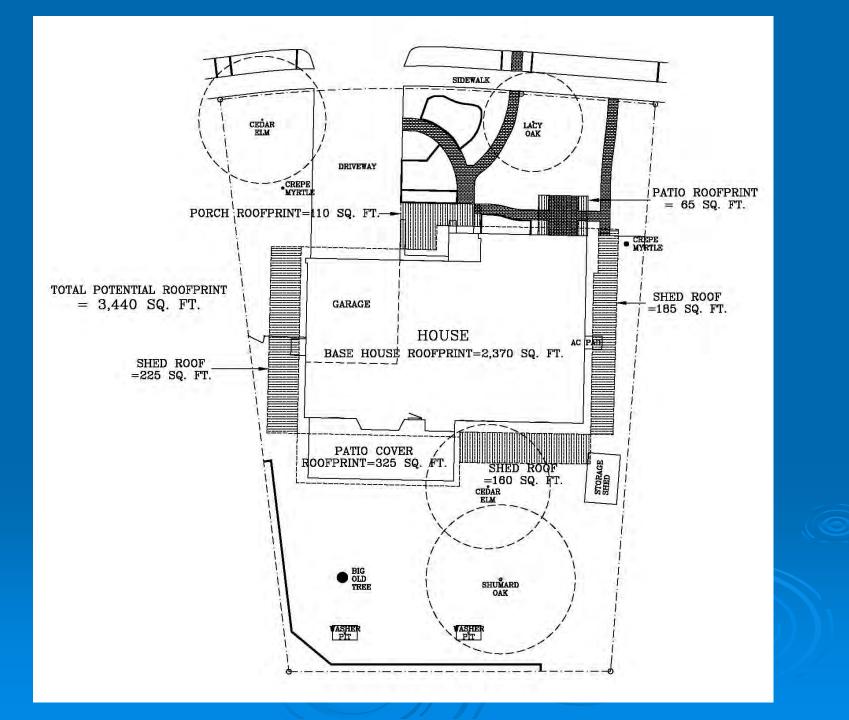
Dripping Springs, 1987-2014 Interior + Irrigation Usage WITHOUT wastewater reuse

Roofprint	4,500 sq. ft.
Cistern capacity	35,000 gallons
Occupancy	4 persons
Water usage rate	45 gpcd
Irrigated area	2,400 sq. ft.

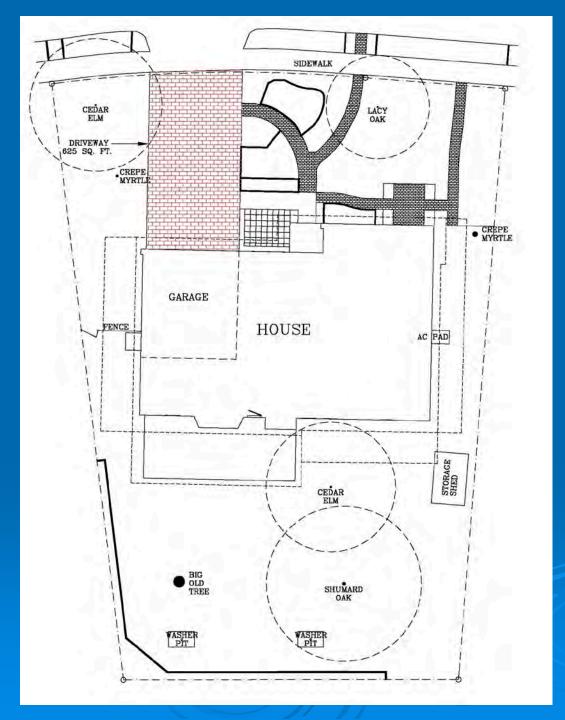
Backup water supply required in 14 years Max. yr. = 50,000 gallons in 2011 $2^{nd} most = 32,000$ gallons in 2009 $3^{rd} most = 26,000$ gallons in 2008 Total over 28 years = 204,000 gallons Dripping Springs, 1987-2014 Interior + Irrigation Usage WITHOUT wastewater reuse, larger system

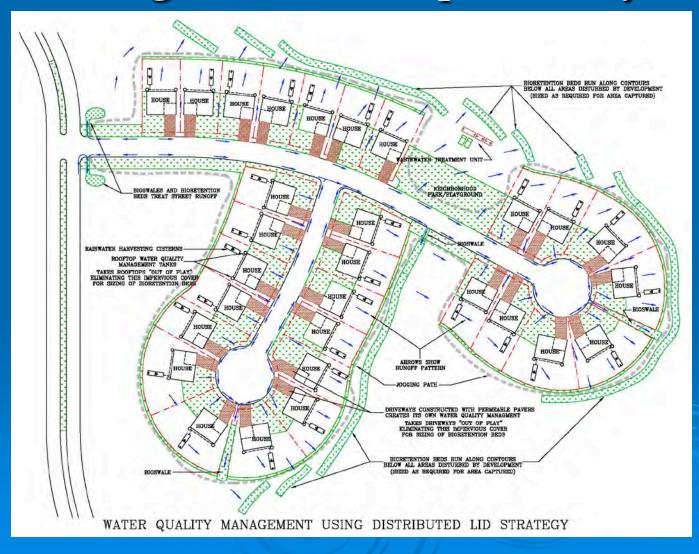

> Roofprint 7,000 sq. ft. Cistern capacity 45,000 gallons Occupancy 4 persons 45 gpcd Water usage rate Irrigated area 2,400 sq. ft. **Backup supply requirements** 2009 2,000 gallons 26,000 gallons 2011 28,000 gallons Total =

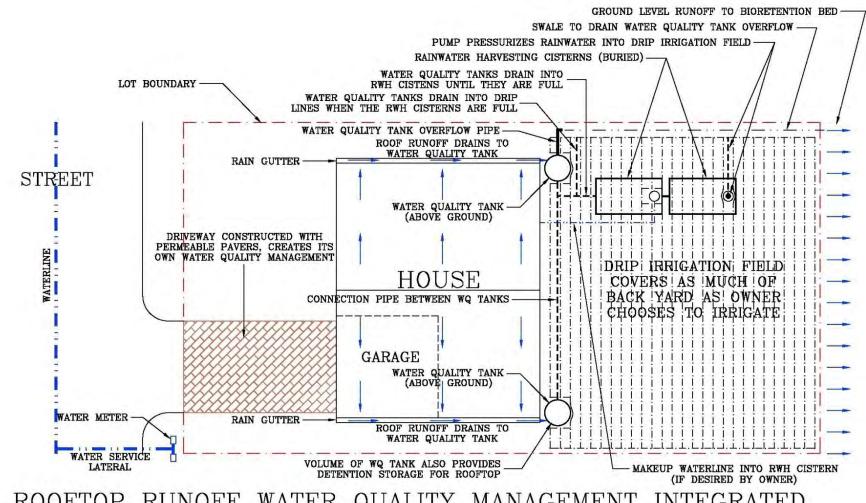
Dripping Springs, 1987-2014 Interior + Irrigation Usage WITH wastewater reuse


Roofprint Cistern capacity Occupancy Water usage rate Irrigated area 4,500 sq. ft. 35,000 gallons 4 persons 45 gpcd 2,400 sq. ft.

Backup supply requirements20098,000 gallons201116,000 gallonsTotal =24,000 gallons







"Minimum Net Water" Take irrigation off the potable system

ROOFTOP RUNOFF WATER QUALITY MANAGEMENT INTEGRATED WITH RAINWATER HARVESTING TO IRRIGATE BACK YARD

Commercial and Institutional Buildings A MAJOR Opportunity

- Ratio of roofprint to water use profile typically favorable for RWH
- Condensate capture also a significant source of water
- Project-scale "waste" water reclamation and reuse to provide irrigation water supply
- LID/green infrastructure stormwater system creates landscape elements that don't need routine irrigation
- Commercial and institutional buildings, or whole campuses of these buildings, could readily be waterindependent – "off grid", not drawing on the conventional water system at all

Cost ... and VALUE

- > By conventional accounting, water from building-scale RWH is very expensive
 > On a VALUE basis:
 - Minimizes depletion of local groundwater
 - Blunts "need" to raid remote aquifers or take land to build reservoirs
 - Sustainable over the long term
 - Economically efficient costs track demand
 Minimizes public risk

Zero Net Water ARCSA 2014

Visit my website and read my blog at www.waterblogue.com for more information

